본문 바로가기
Dim영역

딥노이드, RSNA서 초록 발표…AI 기반 폐 결절 진단 기술 주목

숏뉴스
숏 뉴스 AI 요약 기술은 핵심만 전달합니다. 전체 내용의 이해를 위해 기사 본문을 확인해주세요.

불러오는 중...

닫기
언론사 홈 구독
언론사 홈 구독
뉴스듣기 스크랩 글자크기

글자크기 설정

닫기
인쇄

의료 인공지능(AI) 전문기업 딥노이드 는 미국 시카고에서 열리는 '2024년 북미영상의학회(RSNA 2024)'에서 AI 기반 폐 결절 진단 기술에 대한 연구 성과를 공개한다고 3일 밝혔다.


딥노이드는 RSNA에서 '폐 결절의 국소화 및 Lung-RADS 범주를 고려한 AI 기반 CAD 시스템의 진단 성능'을 주제로 한 초록을 통해 DEEP:LUNG(딥렁)의 우수한 진단 성능을 선보인다.

임상 연구는 부산대병원, 양산부산대병원, 화순전남대병원의 2019년 1월부터 2023년 7월까지 외래와 응급실을 방문한 저선량 흉부 컴퓨터단층촬영(LDCT) 데이터 455건을 활용해 DEEP:LUNG(딥렁)의 진단 성능을 평가했다. 폐 결절의 조직, 크기, 악성도 분류, Lung-RADS 카테고리화 및 결절 위치 국소화 등이다.


DEEP:LUNG(딥렁) 활용 시 주요 평가 지표에서 민감도 91.38%, 특이도 93.08%, 악성도 분류 AUROC 89.62%라는 높은 정확도를 기록하며 우수한 결과를 보였다. AUROC는 분류 모델의 성능을 평가하는 지표로, AUROC 85% 이상이면 상당히 좋은 성능으로 간주한다.


Lung-RADS 카테고리별 평가에서도 민감도와 특이도에서 안정적인 성능을 입증했다. 고형 결절과 간유리 음영 결절의 크기 측정에서도 각각 2mm 및 3mm 이내의 오차 범위를 유지하며 높은 정밀도를 보였다.

딥노이드 최우식 대표는 "연구를 통해 폐 결절 진단 및 악성 분류 분야에서 AI가 의료진에게 큰 도움을 줄 수 있음을 입증할 수 있었다"며 "내년에는 뇌 질환 진단 솔루션과 함께 흉부 영역으로 AI 솔루션의 적용 범위를 확대할 계획"이라고 말했다. 이어 "의료 현장에 보다 포괄적인 AI 진단 지원 도구를 제공하는 것이 다음 목표"라고 덧붙였다.


딥노이드, RSNA서 초록 발표…AI 기반 폐 결절 진단 기술 주목
AD
원본보기 아이콘




박형수 기자 parkhs@asiae.co.kr
AD

<ⓒ투자가를 위한 경제콘텐츠 플랫폼, 아시아경제(www.asiae.co.kr) 무단전재 배포금지>

함께 본 뉴스

새로보기
간격처리를 위한 class

많이 본 뉴스 !가장 많이 읽힌 뉴스를 제공합니다. 집계 기준에 따라 최대 3일 전 기사까지 제공될 수 있습니다.

언론사 홈 구독
언론사 홈 구독
top버튼

한 눈에 보는 오늘의 이슈